MATH 2020 Advanced Calculus II

Tutorial 1

1. Compute $\iint_R (x^2 + 1)y dA$, where $R = \{0 \le x \le 1, 0 \le y \le 2\}$. Solution.

$$\iint_{R} (x^{2}+1)y dA = \int_{0}^{2} \int_{0}^{1} (x^{2}+1)y dx dy$$
$$= \left(\int_{0}^{1} (x^{2}+1) dx\right) \left(\int_{0}^{2} y dy\right)$$
$$= \frac{8}{3}$$

2. Compute $\iint_R y e^{xy} dA$, where $R = \{0 \le x, y \le 1\}$.

Solution. Notice that in the integrand there is the term y which absorbs $\frac{1}{y}$ coming from integrating e^{xy} with respect to x, and so it is more appropriate to compute the double integral by integrating with respect to x first.

$$\iint_{R} y e^{xy} dA = \int_{0}^{1} \int_{0}^{1} y e^{xy} dx dy$$
$$= \int_{0}^{1} \left[e^{xy} \right]_{0}^{1} dy$$
$$= \int_{0}^{1} (e^{y} - 1) dy$$
$$= e - 2$$

3. Find the volume of the solid bounded above by the surface $z = 25 - x^2 - y^2$ and below by $R = \{-3 \le x \le 3, -4 \le y \le 4\}$.

Solution. Notice that the given surface intersects the *xy*-plane along the circle of radius 5 which bounds a disk containing the region R (in fact, the four vertices of R are $(\pm 3, \pm 4)$ which all lie on this circle).

volume =
$$\iint_R z dA$$

= $\int_{-4}^4 \int_{-3}^3 (25 - x^2 - y^2) dx dy$
= $\int_{-4}^4 \left[25 \times 6 - \frac{3^3 \times 2}{3} - 6y^2 \right] dy$
= $(150 - 18) \times 8 - 6 \times \frac{4^3 \times 2}{3}$
= 800